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Abstract
Value functions are a core component of rein-
forcement learning systems. The main idea is
to to construct a single function approximator
V (s; θ) that estimates the long-term reward from
any state s, using parameters θ. In this paper
we introduce universal value function approx-
imators (UVFAs) V (s, g; θ) that generalise not
just over states s but also over goals g. We de-
velop an efficient technique for supervised learn-
ing of UVFAs, by factoring observed values into
separate embedding vectors for state and goal,
and then learning a mapping from s and g to
these factored embedding vectors. We show how
this technique may be incorporated into a re-
inforcement learning algorithm that updates the
UVFA solely from observed rewards. Finally, we
demonstrate that a UVFA can successfully gener-
alise to previously unseen goals.

1. Introduction
Value functions are perhaps the most central idea in rein-
forcement learning (Sutton & Barto, 1998). The main idea
is to cache knowledge in a single function V (s) that repre-
sents the utility of any state s in achieving the agent’s over-
all goal or reward function. Storing this knowledge enables
the agent to immediately assess and compare the utility of
states and/or actions. The value function may be efficiently
learned, even from partial trajectories or under off-policy
evaluation, by bootstrapping from value estimates at a later
state (Precup et al., 2001).
However, value functions may be used to represent knowl-
edge beyond the agent’s overall goal. General value func-
tions Vg(s) (Sutton et al., 2011) represent the utility of any
state s in achieving a given goal g (e.g. a waypoint), repre-
sented by a pseudo-reward function that takes the place of
the real rewards in the problem. Each such value function
represents a chunk of knowledge about the environment:
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how to evaluate or control a specific aspect of the environ-
ment (e.g. progress toward a waypoint). A collection of
general value functions provides a powerful form of knowl-
edge representation that can be utilised in several ways. For
example, the Horde architecture (Sutton et al., 2011) con-
sists of a discrete set of value functions (‘demons’), all of
which may be learnt simultaneously from a single stream
of experience, by bootstrapping off-policy from successive
value estimates (Modayil et al., 2014). Each value function
may also be used to generate a policy or option, for example
by acting greedily with respect to the values, and terminat-
ing at goal states. Such a collection of options can be used
to provide a temporally abstract action-space for learning
or planning (Sutton et al., 1999). Finally, a collection of
value functions can be used as a predictive representation
of state, where the predicted values themselves are used as
a feature vector (Sutton & Tanner, 2005; Schaul & Ring,
2013).
In large problems, the value function is typically repre-
sented by a function approximator V (s, θ), such as a linear
combination of features or a neural network with param-
eters θ. The function approximator exploits the structure
in the state space to efficiently learn the value of observed
states and generalise to the value of similar, unseen states.
However, the goal space often contains just as much struc-
ture as the state space (Foster & Dayan, 2002). Consider
for example the case where the agent’s goal is described by
a single desired state: it is clear that there is just as much
similarity between the value of nearby goals as there is be-
tween the value of nearby states. Our main idea is to ex-
tend the idea of value function approximation to both states
s and goals g, using a universal value function approxima-
tor (UVFA1) V (s, g, θ). A sufficiently expressive function
approximator can in principle identify and exploit structure
across both s and g. By universal, we mean that the value
function can generalise to any goal g in a set G of possible
goals: for example a discrete set of goal states; their power
set; a set of continuous goal regions; or a vector represen-
tation of arbitrary pseudo-reward functions.
This UVFA effectively represents an infinite Horde of

1Pronounce ‘YOU-fah’.
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demons that summarizes a whole class of predictions in a
single object. Any system that enumerates separate value
functions and learns each individually (like the Horde) is
hampered in its scalability, as it cannot take advantage of
any shared structure (unless the demons share parameters).
In contrast, UVFAs can exploit two kinds of structure be-
tween goals: similarity encoded a priori in the goal rep-
resentations g, and the structure in the induced value func-
tions discovered bottom-up. Also, the complexity of UVFA
learning does not depend on the number of demons but on
the inherent domain complexity. This complexity is larger
than standard value function approximation, and represent-
ing a UVFA may require a rich function approximator such
as a deep neural network.
Learning a UVFA poses special challenges. In general, the
agent will only see a small subset of possible combinations
of states and goals (s, g), but we would like to generalise in
several ways. Even in a supervised learning context, when
the true value Vg(s) is provided, this is a challenging re-
gression problem. We introduce a novel factorization ap-
proach that decomposes the regression into two stages. We
view the data as a sparse table of values that contains one
row for each observed state s and one column for each ob-
served goal g, and find a low-rank factorization of the table
into state embeddings φ(s) and goal embeddings ψ(g). We
then learn non-linear mappings from states s to state em-
beddings φ(s), and from goals g to goal embeddings ψ(g),
using standard regression techniques (e.g. gradient descent
on a neural network). In our experiments, this factorized
approach learned UVFAs an order of magnitude faster than
naive regression.
Finally, we return to reinforcement learning, and provide
two algorithms for learning UVFAs directly from rewards.
The first algorithm maintains a finite Horde of general
value functions Vg(s), and uses these values to seed the ta-
ble and hence learn a UVFA V (s, g; θ) that generalizes to
previously unseen goals. The second algorithm bootstraps
directly from the value of the UVFA at successor states. On
the Atari game of Ms Pacman, we then demonstrate that
UVFAs can scale to larger visual input spaces and different
types of goals, and show they generalize across policies for
obtaining possible pellets.

2. Background
Consider a Markov Decision Process defined by a set of
states s ∈ S, a set of actions a ∈ A, and transition prob-
abilities T (s, a, s′) := P(st+1 = s′ | st = s, at = a).
For any goal g ∈ G, we define a pseudo-reward func-
tion Rg(s, a, s

′) and a pseudo-discount function γg(s).
The pseudo-discount γg takes the double role of state-
dependent discounting, and of soft termination, in the sense
that γ(s) = 0 if and only if s is a terminal state according
to goal g (e.g. the waypoint is reached). For any policy
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Figure 1. Diagram of the presented function approximation ar-
chitectures and training setups. In blue dashed lines, we show the
learning targets for the output of each network (cloud). Left: con-
catenated architecture. Center: two-stream architecture with two
separate sub-networks φ and ψ combined at h. Right: Decom-
posed view of two-stream architecture when trained in two stages,
where target embedding vectors are formed by matrix factoriza-
tion (right sub-diagram) and two embedding networks are trained
with those as multi-variate regression targets (left and center sub-
diagrams).

π : S 7→ A and each g, and under some technical reg-
ularity conditions, we define a general value function that
represents the expected cumulative pseudo-discounted fu-
ture pseudo-return, i.e.,

Vg,π(s) := E

[ ∞∑
t=0

Rg(st+1, at, st)

t∏
k=0

γg(sk)

∣∣∣∣∣s0 = s

]
where the actions are generated according to π, as well as
an action-value function

Qg,π(s, a) := Es′ [Rg(s, a, s′) + γg(s
′) · Vg,π(s′)]

Any goal admits an optimal policy π∗g(s) :=
argmaxaQπ,g(s, a), and a corresponding optimal
value function2 V ∗g := Vg,π∗g . Similarly, Q∗g := Qg,π∗g .

3. Universal Value Function Approximators
Our main idea is to represent a large set of optimal value
functions by a single, unified function approximator that
generalises over both states and goals. Specifically, we
consider function approximators V (s, g; θ) ≈ V ∗g (s) or
Q(s, a, g; θ) ≈ Q∗g(s, a), parameterized by θ ∈ Rd, that
approximate the optimal value function both over a poten-
tially large state space s ∈ S , and also a potentially large
goal space g ∈ G.
Figure 1 schematically depicts possible function approxi-
mators: the most direct approach, F : S × G 7→ R simply
concatenates state and goal together as a joint input. The
mapping from concatenated input to regression target can
then be dealt with a non-linear function approximator such
as a multi-layer perceptron (MLP).
A two-stream architecture, on the other hand, assumes that
the problem has a factorized structure and computes its out-
put from two components φ : S 7→ Rn and ψ : G 7→ Rn

2Aka ideal value of an active forecast (Schaul & Ring, 2013).
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Figure 2. Clustering structure of embedding vectors on a one-
room LavaWorld, after processing them with t-SNE (Van der
Maaten & Hinton, 2008) to map their similarities in 2D. Col-
ors correspond. Left: Room layout. Center: State embeddings.
Right: Goal embeddings. Note how both embeddings recover the
cycle and dead-end structure of the original environment.

that both map into an n-dimensional vector space of em-
beddings and output function h : Rn × Rn 7→ R that maps
two such embedding vectors to a single scalar regression
output. We will focus on the case where the mappings φ
and ψ are general function approximators, such as MLPs,
whereas h is a simple function, such as the dot-product.
The two-stream architecture is capable of exploiting the
common structure between states and goals. First, goals are
often defined in terms of states, e.g. G ⊆ S. We exploit this
property by sharing features between φ and ψ. Specifically,
when using MLPs for φ and ψ, the parameters of their first
layers may be shared, so that common features are learned
for both states and goals. Second, the UVFA may be known
to be symmetric (i.e. V ∗g (s) = V ∗s (g) ∀s, g), for example a
UVFA that computes the distance between state s and goal
g in a reversible environment. This symmetry can be ex-
ploited by using the same network φ = ψ, and a symmetric
output function h (e.g. dot product). We will refer to these
two cases as partially symmetric and symmetric architec-
tures respectively. In particular, when choosing a symmet-
ric architecture with a distance-based h, and G = S, then
UVFA will learn an embedding such that small distances
according to h imply nearby states, which may be very use-
ful representation of state (as discussed in Appendix D).3

3.1. Supervised Learning of UVFAs
We consider two approaches to learning UVFAs, first using
a direct end-to-end training procedure, and second using
a two-stage training procedure that exploits the factorised
structure of a two-stream function approximator. We first
consider the simpler, supervised learning setting, before re-
turning to the reinforcement learning setting in section 5.
The direct approach to learning the parameters θ is by
end-to-end training. This is achieved by backpropagating
a suitable loss function, such as the mean-squared error

3Note that in the minimal case of a single goal, both archi-
tectures collapse to conventional function approximation, with ψ
being a constant multiplier and φ(s) a linear function of the value.

(MSE) E
[(
V ∗g (s)− V (s, g; θ)

)2]
, to compute a descent

direction. Parameters θ are then updated in this direction
by a variant of stochastic gradient descent (SGD). This ap-
proach may be applied to any of the architectures in sec-
tion 3. For two-stream architectures, we further introduce a
two-stage training procedure based on matrix factorization,
which proceeds as follows:

• Stage 1: lay out all the values V ∗g (s) in a data matrix
with one row for each observed state s and one col-
umn for each observed goal g, and factorize that ma-
trix4, finding a low-rank approximation that defines
n-dimensional embedding spaces for both states and
goals. We denote φ̂s the resulting target embedding
vector for the row of s and ψ̂g the target embedding
vector for the column of g.

• Stage 2: learn the parameters of the two networks φ
and ψ via separate multivariate regression toward the
target embedding vectors φ̂s and ψ̂g from phase 1,
respectively (see Figure 1, right).

The first stage leverages the well-understood technique of
matrix factorisation as a subprocedure. The factorisation
identifies idealised row and column embeddings φ̂ and ψ̂
that can accurately reconstruct the observed values, ignor-
ing the actual states s and goals g. The second stage then
tries to achieve these idealised embeddings, i.e. how to
convert an actual state s into its idealised embedding φ(s)
and an actual state g into its idealised embedding ψ(s). The
two stages are given in pseudo-code in lines 17 to 24 of Al-
gorithm 1, below. An optional third stage fine-tunes the
joint two-stream architecture with end-to-end training.
In general, the data matrix may be large, sparse and noisy,
but there is a rich literature on dealing with these cases;
concretely, we used OptSpace (Keshavan et al., 2009) for
matrix factorization when the data matrix is available in a
batch form (and h is the dot-product), and SGD otherwise.
As Figure 3 shows, training can be sped up by an order of
magnitude when using the two-stage approach, compared
to end-to-end training, on a 2-room 7x7 LavaWorld.

4. Supervised Learning Experiments
We ran several experiments to investigate the generalisa-
tion capabilities of UVFAs. In each case, the scenario is
one of supervised learning, where the ground truth values
V ∗g (s) or Q∗g(s, a) are only given for some training set of
pairs (s, g). We trained a UVFA on that data, and evaluated
its generalisation capability in two ways. First, we mea-
sured the prediction error (MSE) on the value of a held-out
set of unseen (s, g) pairs. Second, we measured the policy

4This factorization can be done with SGD for most choices of
h, while the linear case (dot-product) also admits more efficient
algorithms like singular value decomposition.
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Figure 3. Comparative performance of a UVFA on LavaWorld
(two rooms of 7x7) as a function of training steps for two differ-
ent architectures: the two-steam architecture with a dot-product
on top (‘dot’) and the concatenated architecture (‘concat’), and
for two training modes: end-to-end supervised regression (‘e2e’)
and two-stage training (‘2stage’). Note that two-stage training
is impossible for the concatenated network. Dotted lines indi-
cate minimum and maximum observed values among 10 random
seeds. The computational cost of the matrix factorization is orders
of magnitudes smaller than the regression and omitted in these
plots.

True Subgoal 1 Reconstructed Subgoal 1

True Subgoal 2 Reconstructed Subgoal 2

True Subgoal 3 Reconstructed Subgoal 3
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Factor 1
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Figure 4. Illustrations. Left: Color-coded value function overlaid
on the maze structure of the 4-rooms environment, for 5 different
goal locations. Middle: Reconstruction of these same values, af-
ter a rank-3 factorization of the UVFA. Right: Overlay for the
three factors (embedding dimensions) from the low-rank factor-
ization of the UVFA: the first one appears to correspond to an
inside-vs-corners dimension, and the other two appear to jointly
encode room identity.
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Figure 5. Generalization to unseen values as a function of rank.
Left: Policy quality. Right: Prediction error.

quality of a value function approximator Q̂(s, a, g; θ) to be
the true expected discounted reward according to its goal g,
averaged over all start states, when following the soft-max
policy of these values with temperature τ , as compared to
doing the same with the optimal value function. A non-
zero temperature makes this evaluation criterion change
smoothly with respect to the parameters, which gives par-
tial credit to near-perfect policies5 as in Figure 8. We nor-
malise the policy quality such that optimal behaviour has a
score of 1, and the uniform random policy scores 0.
To help provide intuition, we use two small-scale example
domains. First, a classical grid-world with 4 rooms and an
action space with the 4 cardinal directions (see Figure 4),
second LavaWorld (see Figure 2, left), which is a grid-
world with a couple of differences: it contains lava blocks
that are deadly when touched, it has multiple rooms, each
with a ‘door’ that teleports the agent to the next room, and
the observation features show only the current room.
In this paper we will side-step the thorny issue of where
goals come from, and how they are represented; instead, if
not mentioned otherwise, we will explore the simple case
where goals are states themselves, i.e. G ⊂ S and enter-
ing a goal is rewarded. The resulting pseudo-discount and
pseudo-reward functions can then be defined as:

Rg(s, a, s
′) =

{
1, s′ = g and γext(s) 6= 0

0, otherwise

γg(s) =

{
0, s = g

γext(s), otherwise

where γext is the external discount function.

4.1. Tabular Completion
Our initial experiments focus on the simplest case, using a
tabular representation of the UVFA. Both states and goals
are represented unambiguously by 1-hot unit vectors6, and
the mappings φ andψ are identity functions. We investigate
how accurately unseen (s, g) pairs can be reconstructed

5Compared to ε-greedy, a soft-max also prevents deadly ac-
tions (as in LavaWorld) from being selected too often.

6A single dimension has value 1, all others are zero.
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Figure 6. Generalization to unseen values as a function of sparsity
for rank n = 7. The sparsity is the proportion of (s, g) values that
are unobserved. Left: Policy quality. Right: Prediction error.

with a low-rank approximation. Figure 4 provides an illus-
tration. We found that the policy quality saturated at an op-
timal behavior level already at a low rank, while the value
error kept improving (see Figure 5). This suggests that a
low-rank approximation can capture much of the structure
of a universal value function, at least insofar as its induced
policies are concerned. Another illustration is given in Fig-
ure 2 showing how the low-rank embeddings can recover
the topological structure of policies in LavaWorld.
Next, we evaluate how resilient the process is with respect
to missing or unreliable data. We represent the data as a
sparse matrix M of (s, g) pairs, and apply OptSpace to per-
form sparse matrix completion (Keshavan et al., 2009) such
that M ≈ φ̂>ψ̂, reconstructing V (s, g; θ) := φ̂

>
s ψ̂g . Fig-

ure 6 shows that the matrix completion procedure provides
successful generalisation, and furthermore that policy qual-
ity degrades gracefully as less and less value information is
provided. See also Figure 13 in the appendix for an illus-
tration of this process.
In summary, the UVFA is learned jointly over states and
goals, which lets it infer V (s, g) even if s and g have never
before been encountered together; this form of generaliza-
tion would be inconceivable with a single value function.

4.2. Interpolation
One use case for UVFAs is the continual learning setting,
when the set of goals under consideration expands over
time (Ring, 1994). Ideally, a UVFA trained to estimate the
values on a training set of goals GT should give reason-
able estimates on new, never-seen goals from a test set GV
if there is structure in the space of all goals that the map-
ping function ψ can capture. We investigate this form of
generalization from a training set to a test set of goals in
the same supervised setup as before, but with non-tabular
function approximators.
Concretely, we represent states in the LavaWorld by a grid
of pixels for the currently observed room. Each pixel is
a binary vector indicating the presence of the agent, lava,
empty space, or door respectively. We represent goals as a
desired state grid, also represented in terms of pixels, i.e.
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Figure 7. Policy quality (top) and prediction error (bottom) on
the UVFA learned by the two-stream architecture (with two-stage
training), as a function of training samples (log-scale), on a 7x7
LavaWorld with 1 room. Left: on training set of goals. Right: on
test set of goals.

G ⊂ S. The data matrix M is constructed from all states,
but only the goals in the training set (half of all possible
states, randomly selected); a separate three-layer MLP is
used for φ and ψ, and training follows our proposed two-
stage approach (lines 17 to 24 in Algorithm 1 below; see
also Section 3.1 and Appendix B), and a small rank of
n = 7 that provides sufficient training performance (i.e.,
90% policy quality, see Figure 5). Figure 7 summarizes the
results, showing that it is possible to interpolate the value
function to a useful level of quality on the test set of goals
(the remaining half of G).
Furthermore, transfer learning is straightforward, by post-
training the UVFA on goals outside its training set: Fig-
ure 12 shows that this leads to very quick learning, as com-
pared to training a UVFA with the same architecture from
scratch.

4.3. Extrapolation
The interpolation between goals is feasible because similar
goals are represented with similar features, and because the
training set is broad enough to cover the different parts of
goal space, in our case because we took a random subset of
G. More challengingly, we may still be able to generalize
to unseen goals in completely new parts of space – in par-
ticular, if states are represented with the same features as
goals, and states in these new parts of space have already
been encountered, then a partially symmetric architecture
(see section 3) allows the knowledge transfer from φ to ψ.
We conduct a concrete experiment to show the feasibility
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Figure 8. A UVFA trained only on goals in the first 3 rooms of the
maze generalizes such that it can achieve goals in the fourth room
as well. Above: This visualizes the learned UVFA for 3 test goals
(marked as red dots) in the fourth room. The color encodes the
value function, and the arrows indicate the actions of the greedy
policy. Below: Ground truth for the same 3 test goals.

of the idea, on the 4-room environment, where the training
set now includes only goals in three rooms, and the test set
contains the goals in the fourth room. Figure 8 shows the
resulting generalization of the UVFA, which does indeed
extrapolate to induce a policy that is likely to reach those
test goals, with a policy quality of 24%± 8%.

5. Reinforcement Learning Experiments
Having established that UVFAs can generalize across goals
in a supervised learning setting, we now turn to a more real-
istic reinforcement learning scenario, where only a stream
of observations, actions and rewards is available, but there
are no ground-truth target values. Also fully observable
states are no longer assumed, as observations could be
noisy or aliased. We consider two approaches: firstly rely-
ing on Horde to provide targets to the UVFA, and secondly
bootstrapping from the UVFA itself. Given the results from
Section 4 we retain a two-stream architecture throughout,
with relatively small embedding dimensions n.

5.1. Generalizing from Horde
One way to incorporate UVFAs into a reinforcement learn-
ing agent is to make use of the Horde architecture (Sutton
et al., 2011). Each demon in the Horde approximates the
value function for a single, specific goal. These values are
learnt off-policy, in parallel, from a shared stream of inter-
actions with the environment. The key new ingredient is to
seed a data matrix with values from the Horde, and use the
two-stream factorization to build a UVFA that generalises
to other goals than those learned directly by the Horde.
Algorithm 1 provides pseudocode for this approach. Each
demon learns a specific value function Qg(s, a) for its goal
g (lines 2-10), off-policy, using the Horde architecture. Af-
ter processing a certain number of transitions, we build a
data matrix M from their estimates, where each column
g corresponds to one goal/demon, and each row t corre-
sponds to the time-index of one transition in the history,

Algorithm 1 UVFA learning from Horde targets
1: Input: rank n, training goals GT , budgets b1, b2, b3
2: Initialise transition historyH
3: for t = 1 to b1 do
4: H ← H∪ (st, at, γext, st+1)
5: end for
6: for i = 1 to b2 do
7: Pick a random transition t fromH
8: Pick a random goal g from GT
9: Update Qg given a transition t

10: end for
11: Initialise data matrix M
12: for (st, at, γext, st+1) inH do
13: for g in GT do
14: Mt,g ← Qg(st, at)
15: end for
16: end for
17: Compute rank-n factorisation M ≈ φ̂>ψ̂
18: Initialise embedding networks φ and ψ
19: for i = 1 to b3 do
20: Pick a random transition t fromH
21: Do regression update of φ(st, at) toward φ̂t
22: Pick a random goal g from GT
23: Do regression update of ψ(g) toward ψ̂g
24: end for
25: return Q(s, a, g) := h(φ(s, a), ψ(g))
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Figure 9. A UVFA with embedding dimension n = 6, learned
with a horde of 12 demons, on the a 3-room LavaWorld of size
7× 7, following Algorithm 1. Heatmaps of prediction error with
(log) data samples one vertical axis and (log) learning updates on
the horizontal axis: warmer is better. Left: Learned UVFA perfor-
mance on the 12 training goals estimated by the demons. Right:
UVFA generalization to a test set of 25 unseen goals. Given the
difficulty of data imbalance, the prediction error is adequate on
the training set (MSE of 0.6) and generally better on the test set
(MSE of 0.4), even though we already see an overfitting trend
toward the larger number of updates.

from which we then produce target embeddings φ̂t for each
time-step and ψ̂g for each goal (as in section 3.1, line 11-
17), and in the following stage the two networks φ and ψ
are trained by regression to match these (lines 18-24).
The performance of this approach now depends on two fac-
tors: the amount of experience the Horde has accumulated,
which directly affects the quality of the targets used in the
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Figure 10. UVFA results on Ms Pacman. Top left: Locations
of 29 training set pellet goals highlighted in green. Top right:
Locations of 120 test set pellet goals in pink. Center row: Color-
coded value functions for 5 test set pellet goals, as learned by
the Horde. Bottom row: Value functions predicted by a UVFA,
trained only from the 29 training set demons, as predicted on the
same 5 test set goals. The wrapping of values between far left and
far right is due to hidden passages in the game map.

matrix factorization; and the amount of computation used
to build the UVFA from this data (i.e. training the embed-
dings φ(s) and ψ(g).
This reinforcement learning approach is more challeng-
ing than the simple supervised learning setting that we ad-
dressed in the previous section. One complication is that
the data itself depends on the way in which the behaviour
policy explores the environment. In many cases, we do
not see much data relevant to goals that we might like to
learn about (in the Horde), or generalise to (in the UVFA).
Nevertheless, we found that this approach is sufficiently ef-
fective. Figure 9 visualizes performance results according
to both these dimensions, showing that there is a tipping
point in the quantity of experience after which the UVFA
approximates the ground truth reasonably well; training it-
erations on the other hand lead to smooth improvement. As
section 4.2 promised, the UVFA also generalizes to those
goals for which no demon was trained.

5.2. Ms Pacman
Scaling up, we applied our approach to learn a UVFA for
the Atari 2600 game Ms. Pacman. We used a hand-crafted
goal space G: for each pellet on the screen, we defined eat-
ing it as an individual goal g ∈ R2, which is represented
by the pellet’s (x, y) coordinate on-screen. Following Al-
gorithm 1, a Horde with 150 demons was trained. Each
demon processed the visual input directly from the screen
(see Appendix C for further experimental details). A sub-
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Figure 11. Policy quality after learning with direct bootstrapping
from a stream of transitions using Equation 1 as a function of the
fraction of possible training pairs (s, g) that were held out, on a
2-room LavaWorld of size 10× 10, after 104 updates.

set of 29 ‘training’ demons was used to seed the matrix and
train a UVFA. We then investigated generalization perfor-
mance on 5 unseen goal locations g, corresponding to 5
of the 150 pellet locations, randomly selected after exclud-
ing the 29 training locations. Figure 10 visualises the value
functions of the UVFA at these 5 pellet locations, compared
to the value functions learned directly by a larger Horde.
These results demonstrate that a UVFA learned from a
small Horde can successfully approximate the knowledge
of a much larger Horde.
Preliminary, non-quantitative experiments further indicate
that representing multiple value functions in a single UVFA
reduces noise from the individual value functions, and that
the resulting policy quality is decent.

5.3. Direct Bootstrapping
Instead of a detour via an explicit Horde, it is also possi-
ble to train a UVFA end-to-end with direct bootstrapping
updates using a variant of Q-learning:

Q(st, at, g) ← α
(
rg + γg max

a′
Q(st+1, a

′, g)
)

+(1− α)Q(st, at, g) (1)

applied at a randomly selected transition (st, at, st+1) and
goal g; where rg = Rg(st, at, st+1).
When bootstrapping with function approximation at the
same time as generalizing over goals, the learning pro-
cess is prone to become unstable, which can sometimes
be addressed by much smaller learning rates (and slowed
convergence), or using a more well-behaved h function
(at the cost of generality). In particular, here we ex-
ploit our prior knowledge that our pseudo-reward functions
are bounded between 0 and 1, and use a distance-based
h(a, b) = γ‖a−b‖2 , where ‖ · ‖2 denotes Euclidean dis-
tance between embedding vectors. Figure 11 shows gener-
alization performance after learning when only a fraction
of state-goal pairs is present (as in Section 4.1). We do not
recover 100% policy quality with this setup, yet the UVFA
generalises well, as long as it is trained on about a quarter
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Figure 12. Policy quality (left) and prediction error (right) as a
function of additional training on the test of goals for the 3-room
LavaWorld environment of size 7x7 and n = 15. ‘Baseline’ de-
notes training on the test set from scratch (end-to-end), and ‘trans-
fer’ is the same setup, but with the UVFA initialised by training on
the training set. We find that embeddings learned on the training
set are helpful, and permit the system to attain good performance
on the test set with just 1000 samples, rather than 100000 samples
when training from scratch.

of the possible (s, g) pairs.

6. Related Work
A number of previous methods have focused on general-
ising across tasks rather than goals (Caruana, 1997). The
distinction is that a task may have different MDP dynamics,
whereas a goal only changes the reward function but not the
transition structure of an MDP. These methods have almost
exclusively been in explored in the context of policy search,
and fall into two classes: methods that combine local poli-
cies into a single situation-sensitive controller, for example
parameterized skills (Da Silva et al., 2012) or parameter-
ized motor primitives (Kober et al., 2012); and methods that
directly parameterize a policy by the task as well as the
state, e.g. using model-based RL (Deisenroth et al., 2014).
In contrast, our approach is model-free, value-based, and
exploits the special shared structure inherent to states and
goals, which may not be present in arbitrary tasks. Further-
more, like the Horde (Sutton et al., 2011), but unlike policy
search methods, the UVFA does not need to see complete
separate episodes for each task or goal, as all goals can
in principle be learnt by off-policy bootstrapping from any
behaviour policy (see section 5.3). A different line of work
has explored generalizing across value functions in a rela-
tional context (van Otterlo, 2009).
Perhaps the closest prior work to our own is the fragment-
based approach of Foster and Dayan (Foster & Dayan,
2002). This work also explored shared structure in value
functions across many different goals. Their mechanism
used a specific mixture-of-Gaussians approach that can be
viewed as a probabilistic UVFA where the mean is repre-
sented by a mixture-of-constants. The mixture components
were learned in an unsupervised fashion, and those mix-
tures were then recombined to give specific values. How-
ever, the mixture-of-constants representation was found to

be limited, and was augmented in their experiments by a
tabular representation of states and goals. In contrast, we
consider general function approximators that can represent
the joint structure in a much more flexible and powerful
way, for example by exploiting the representational capa-
bilities of deep neural networks.

7. Discussion
This paper has developed a universal approximator for
goal-directed knowledge. We have demonstrated that our
UVFA model is learnable either from supervised targets, or
directly from real experience; and that it generalises effec-
tively to unseen goals. We conclude by discussing several
ways in which UVFAs may be used.
First, UVFAs can be used for transfer learning to new
tasks with the same dynamics but different goals. Specifi-
cally, the values V (s, g; θ) in a UVFA can be used to ini-
tialise a new, single value function Vg(s) for a new task
with unseen goal g. Figure 12 demonstrates that an agent
which starts from transferred values in this fashion can
learn to solve the new task g considerably faster than ran-
dom value initialization.
Second, generalized value functions can be used as fea-
tures to represent state (Schaul & Ring, 2013); this is a
form of predictive representation (Singh et al., 2003). A
UVFA compresses a large or infinite number of predictions
into a short feature vector. Specifically, the state embed-
ding φ(s) can be used as a feature vector that represents
state s. Furthermore, the goal embedding φ(g) can be used
as a separate feature vector that represents state g. Figure 2
illustrated that these features can capture non-trivial struc-
ture in the domain.
Third, a UVFA could be used to generate temporally ab-
stract options (Sutton et al., 1999). For any goal g a
corresponding option may be constructed that acts (soft-
)greedily with respect to V (s, g; θ) and terminates e.g.
upon reaching g. The UVFA then effectively provides a
universal option that represents (approximately) optimal
behaviour towards any goal g ∈ G. This in turn allows a hi-
erarchical policy to choose any goal g ∈ G as a temporally
abstract action (Kaelbling, 1993).
Finally, a UVFA could also be used as a universal op-
tion model (Yao et al., 2014). Specifically, if pseudo-
rewards are defined by goal achievement (as in section 4),
then V (s, g; θ) approximates the (discounted) probability
of reaching g from s, under a policy that tries to reach it.
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A. Ground Truth Evaluation
Whenever ground truth values are used in the supervised
setups, we compute these by building an explicit MDP for
eachRg , converted to tabular representation, and then solv-
ing for Vg or Qg . We use these same MDPs also for eval-
uating policy quality: we compute the expected discounted
return when the induced stochastic policy fromQ(s, a, g) is
run on the MDP (with temperature τ = 0.05), and average
these values over all possible start states. Of course, this
ground-truth based procedure is only applicable to small-
scale problems.

B. Neural Network Details
All neural networks mentioned use two hidden layers of
size 128, rectified linear units, all of them implemented us-
ing the Torch7 library (Collobert et al., 2011a). All optimi-
sation uses the SGD-variant Adam (Kingma & Ba, 2014)
with its recommended default hyper-parameters, a mini-
batch size of 20 and learning-rate α = 0.005. The only
exception to this setup is for the larger-scale Ms Pacman
experiment described below.

C. Ms Pacman Experiment Details
150 subgoals were defined, for collecting particular pellets
in the game. Specifically, for i ∈ {1, ..., 150}, pseudo-
reward and pseudo-discount functions for each goal gi were
given by:

Rgi(s, a, s
′) =


1 ¬pelleti(s

′) ∧ pelleti(s)
∧γext(s) 6= 0

0 otherwise

γgi(s) =

{
0 ¬pelleti(s)
γext(s), otherwise

where γext is the external discount function and pellet(s′)
is true if and only if the corresponding pellet is still in the
game.
For reasons of expedience, a few simplifications are made
to the environment during training. These should not dra-
matically affect the performance of the method, however.
For each of the above-defined subgoals, we construct a
modified version of the Ms Pacman Atari environment
(Bellemare et al., 2012) as follows. When the subgoal is
achieved, the environment is reset, Pacman’s position is set
to a random location, and a new episode begins. At the be-
ginning of each episode we skip over a start-up time of 260
frames where nothing happens in the game.
Each demon uses a variant of Deep Q-Learning with Expe-
rience Replay (Mnih et al., 2013) to learn the value func-
tions with respect to its subgoal. The external discount fac-
tor is fixed at 0.95. An action repeat of 4 is used, and frames
are preprocessed by conversion to grayscale and downsam-

Figure 14. The factors discovered when training a UVFA of rank
n = 10 on all data (150 pellet goals). They visibly capture spa-
tial regions, but of course the full value functions are much more
complex, and involve power-pills and ghosts as well – those are
just more difficult to visualise. However, when running a Pacman
agent that follows the UVFA policy for one of the pellet goals, it
consistently reaches it, while avoiding ghosts on the way.

pling to 84x84 pixels. The input to the network is the con-
catenation of the last 4 frames, i.e. an 84x84x4 tensor. The
first hidden layer convolves this with 16 8x8 filters, with
stride 4, and then a rectifier. The second layer is another
convolution, with 32 4x4 filters, with stride 2, and a fur-
ther rectifier. This is followed by a fully-connected layer of
256 rectifier units. The output layer is linear, followed by a
Log-SoftMax. The action set is restricted to the up, down,
left and right actions.
We use the value estimates learned in this manner to train
a UVFA, by performing a rank 10 SVD decomposition to
obtain desirable embedding vectors. We then train the goal
half of the UVFA network to map each pellet’s (x, y) po-
sition (normalized to the interval [0, 1]) to the correspond-
ing vector in the embedding space, using supervised tar-
gets. The goal half of the UVFA is a multi-layer perceptron
with rectifier units, and 4 hidden layers of size 100. This is
trained on 10000 minibatches of size 20, using Adam with
learning rate 0.001. The state half of the network is tabular.
In order to visualize the values learned by the network, we
define a set of mapping states, which are generated by tak-
ing the initial state of the game, and teleporting pacman
to each point in turn on a 37x14 grid, by modifying the
appropriate memory location in the emulator state. If the
resulting position is not a wall, the corresponding observa-
tion image is duplicated 4 times and fed into the network.
The maximal output is taken as an estimate of the value of
that state.
Figure 14 illustrates the matrix factorization in the Pacman
environment. Each of the ten plots illustrates a single com-
ponent of the state embedding φ(s), sweeping over a set
of states s in which Pacman’s position has been set to the
corresponding location.

D. State Embeddings
The same embedding techniques that underlie our two-
stream UVFA architectures can be used for another,
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Figure 13. Illustration of sparse matrix decomposition for a 2-room LavaWorld. From left to right: ground truth Q-values, sparse matrix
with subset of visible ones M, φ̂, ψ̂, reconstructed Q-values for all entries.

straightforward purpose, namely for learning an embed-
ding of states that induces a useful, reachability-based met-
ric. In particular, we can use G = S and a very simple
parameter-free combination function of the form h(·, ·) =
γD(·,·), where D is a distance function (as in section 5.3).
The motivation for this form comes from natural language
processing literature. Several works, for example (Col-
lobert et al., 2011b; Mikolov et al., 2013), define an em-
bedding vector for every word. The training objective is to
predict a given word from words around it in a sentence.
The probability of such prediction is calculated as essen-
tially an exponential of the negative distance between the
word vector and a vector obtained from words around it.
After training, words with similar meaning will have their
vectors close in the embedding space. In our case states of
the environment are related to one another. Specifically it
is easy to move from one state to some states but hard to
move to other states (it takes a longer time for example).
What we would like to achieve is that states that are eas-
ily reachable from one another are close in the embedding
space and those which are not are far. This is what we in-
deed observe in experiments. Initially random embedding
vectors organize to reflect relations between states. For ex-
ample in an open two dimensional grid world we find that

the vectors roughly lie on a two dimensional plane, thus
recovering the underlying structure of the environment.
We test the ability of embeddings to generalize in three set-
tings: 1) V learning with shared state and goal embeddings
φ = ψ, 2) V learning without sharing and 3) Q learning
(no sharing possible). In many environments it might be
easy to go from state s to state s′ but not vice-versa. In this
case a symmetric distance function is not appropriate, so
we propose both a symmetric and an asymmetric D:

DS(s, g) = ‖φ(s)− ψ(g)‖2
DA(s, g) = ‖σ(ψ1(g))(φ(s)− ψ2(g)))‖2

where σ is a the logistic function and ψ1 and ψ2 are two
halves of the embedding vector of g. When learning Q, the
φ embeddings are for pairs (s, a).
If a transition model is available we can instead do boot-
strap learning with only V , by replacing Q(st+1, a

′, g) in
the max of Equation 1 by V (Ta′(st+1), g), where Ta(s)
denotes the state reached after executing action a in state s.
We look at the training time and generalization in the set-
tings of Section 4.1 where only a fraction of state goal pairs
is present. We use 4 room environment of size 8. The train-
ing time is shown in the Figure 15. We see that sharing the
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Figure 15. Left: Policy quality as a function of batches of boot-
strapping updates, using V learning with shared and not shared
representations for goals and using Q learning, in a 8x8 4-rooms
environment. Learning is easier with a shared architecture, but
sharing is only applicable when learning V : the embeddings
needed for Q depend on (s, a) jointly in one stream, but only
on g in the other. Given that the Q case must learn 4 times as
many values (differentiating actions in every state), its learning
performance is very much in line with the expected 4x slowdown.
Right: overlaid mapping of 8 embedding factors for a 32×32 en-
vironment. Note how they capture smooth changes within rooms,
while capturing topology and spilling through doorways.

state and goal representation gives the best performance.
Unlike the 4-room environment, the dynamics in Lava-
World are not reversible. There we compared the two dis-
tance function DS and DA, finding that in a two room,
10× 10 LavaWorld environment DS obtains a policy qual-
ity of 0.95, while DA obtained 1.0. Surprisingly, the sym-
metric function captured the environment quite well, but
not as well as the asymmetric functions that captured it per-
fectly.


